If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+16x-20=0
a = 5; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·5·(-20)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{41}}{2*5}=\frac{-16-4\sqrt{41}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{41}}{2*5}=\frac{-16+4\sqrt{41}}{10} $
| 0.2s=8 | | 10x+2=-13 | | 4(2x-1)-6=14 | | 4x+36=24 | | 6p=8p-2p | | 1.6x+x=3 | | V=1/3πR²h | | 3/x2-x-6=4/2x+x-6 | | -3(2x-3)+1=16 | | ×/3x-5=13 | | X+0.09x=201.65 | | 2/3x-4=5/6x+7 | | 2.5=1.04n | | 3/8+1/2x=2x | | -(2x+4)+6=-2 | | 3x-2/3=x-3/2=5/6 | | 4x+7-11=-2 | | y(2/3)=4 | | y=10^3 | | 1.05^x=60 | | -5(x-5)+15=30 | | x+3=1+x2 | | -5(x-5+15=30 | | r+9=9 | | 340,282,366,920,938,463,463,374,607,431,768,211,455-e=99999999999999999999999999999999 | | -(x-5)+15=40 | | 340,282,366,920,938,463,463,374,607,431,768,211,455+e=999999999999999999999999999999 | | 1+e=3 | | 9.999999999999998e+31= | | x+13=3x-3 | | y-5.59=6.9 | | 2a(3a-5a²=) |